
Relations entre les différentes notions

Les Transistors

Chapitre de base (fondamental)

- A quoi cela sert il???
- A quoi cela ressemble-t-il????
- Comment cela marche-t-il????
 - Observer
 - Expliquer
 - Physique des semi-conducteurs
 - Formalisation (Développements analytiques)

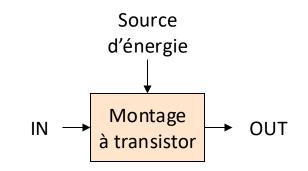
Trop compliqué ==> Analyse intuitive

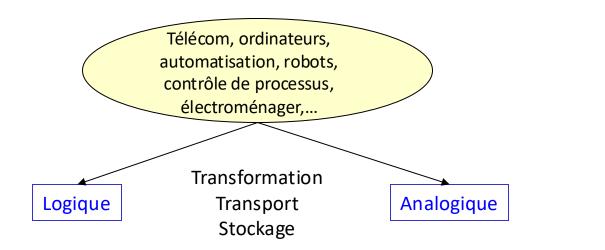
- Modélisation inspiration diodes
- Exploiter

Logique, analogique

Partout!!!

Rappels diodes


Physiquement, schématiquement


Les Transistors

Préambule

Dispositifs à semi-conducteur.

Eléments actifs, capables d'amplifier un signal.

Deux familles de transistors

- le transistor MOS, ou MOS-FET
- le transistor BIPOLAIRE ou B.J.T. (électrons et trous).

Il y a encore quelques années

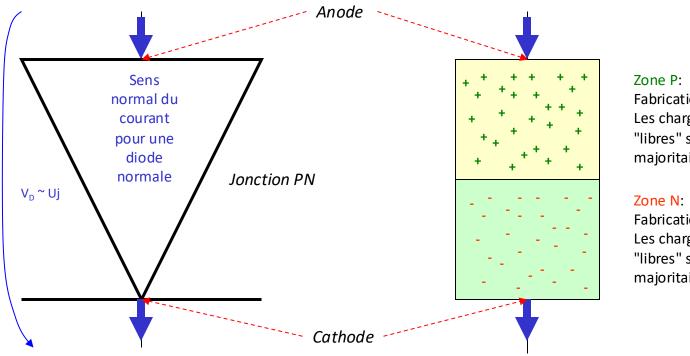
Bipolaire: le plus connu et le plus utilisé

MOS: Technologie difficile à maîtriser

Aujourd'hui

MOS supplante Bipolaire dans beaucoup de domaines Bipolaire résiste pour des applications spécifiques

Mais aussi → BiCMOS

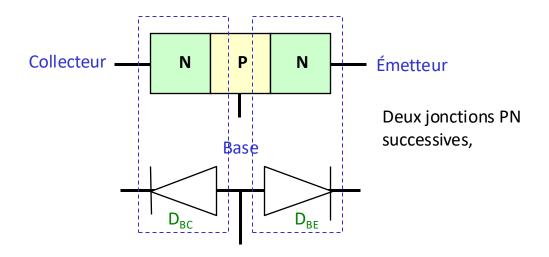

Le transistor bipolaire

Description

Bipolaire plus avantageux que MOS pour applications exigeant:

- Des courants élevés (étages de sortie)
- Circuits logiques ultra rapides
- Un gain en tension élevé
- Un faible "bruit" (préamplis Hi-Fi)
- La réalisation de fonctions linéaires à hautes performances
- Un bon équilibrage entre les "tensions de seuil" des composants.

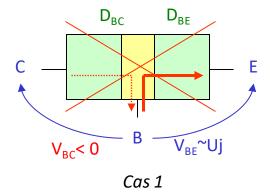
Parenthèse diode

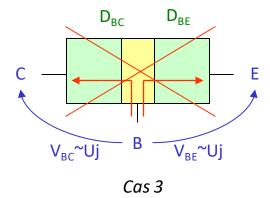


Fabrication spécifique Les charges positives "libres" sont majoritaires

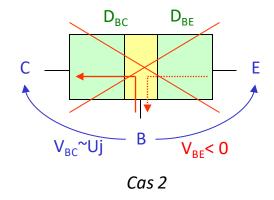
Fabrication spécifique Les charges négatives "libres" sont majoritaires

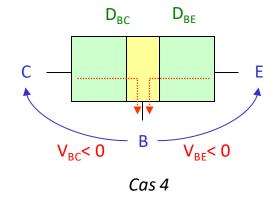
Structure d'un bipolaire

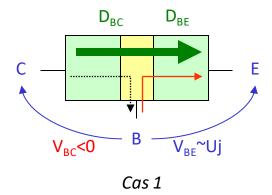

Un seul cristal de silicium - Succession de 3 zones, dopées différemment

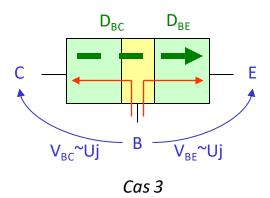


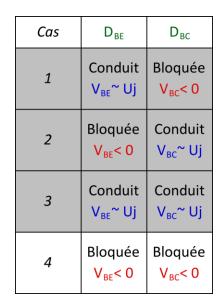
Un contact électrique est établi vers chacune des zones:

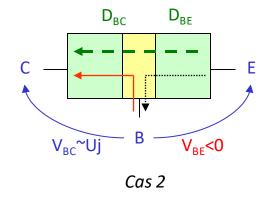

émetteur, base et collecteur.


Vision de deux diodes tête-bêche

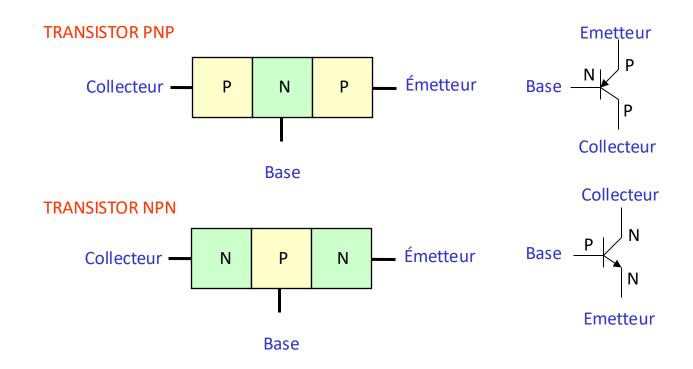



Cas	D _{BE}	D _{BC}
1	Conduit V _{BE} ~ Uj	Bloquée V _{BC} < 0j
2	Bloquée V _{BE} < 0	Conduit V _{BC} ~ Uj
3	Conduit V _{BE} ~ Uj	Conduit V _{BC} ~ Uj
4	Bloquée V _{BE} < 0	Bloquée V _{BC} < 0



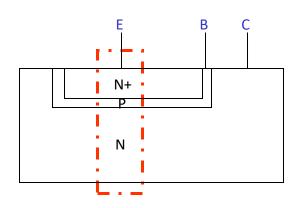


Observation des modes de fonctionnement



Résumé des modes de fonctionnement

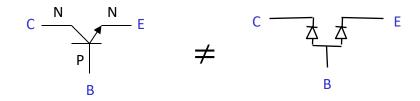
MODE	JONCTION EB	JONCTION BC	UTILISATION
ACTIF DIRECT MODE NORMAL	DIRECT	INVERSE	CIRCUITS
ACTIF INVERSE	INVERSE	DIRECT	PERFORMANCES DEGRADEES
SATURE	DIRECT	DIRECT	LOGIQUE
BLOQUE	INVERSE	INVERSE	LOGIQUE


Deux types de transistors bipolaires

Transistor NPN plus courant que PNP (raisons technologiques).

Remarques

Structure réelle d'un transistor bipolaire

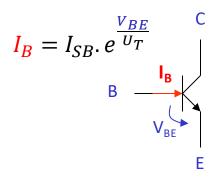


- L'émetteur est impérativement plus dopé que la base: Détermine le gain en courant du transistor.
- La base est une région extrêmement mince: Détermine les propriétés du transistor.
- Le collecteur est faiblement dopé: Permet au transistor de supporter des tensions élevées.

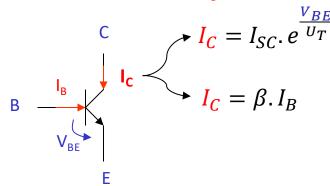
Bipolaire n'est pas un dispositif symétrique:

Rôles de l'émetteur et du collecteur non réversibles:
 Différence avec source et drain d'un transistor MOS

Impossible de réaliser un transistor avec 2 diodes discrètes



- Critère de la base très mince non respecté
- Cependant: chaque jonction du transistor bipolaire = excellente diode.


Modèle élémentaire du bipolaire

Source de courant commandée

Comportement de la diode D_{BE}

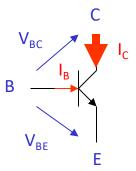
Observation du courant I_C

Conséquences: Deux notions fondamentales

Bipolaire = source de courant (courant de collecteur)

- commandée par un faible courant (courant de base).
- commandée par une tension (tension base émetteur)

Remarques sur la source de courant l_C


Source de courant => mode normal d'utilisation

- $V_{RC} < 0 \text{ et } V_{RF} > 0$
- Courant de base de valeur << courant de collecteur

Relation entre I_c et I_B : le gain en courant β du transistor.

$$I_B = \frac{I_C}{\beta}$$
 av

 $I_B = \frac{I_C}{R}$ avec β = quelques dizaines à quelques centaines

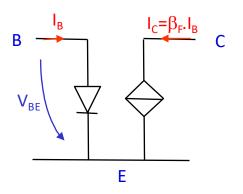
Gain du Bipolaire: Bip. idéal: gain en courant infini, ou courant de base nul.

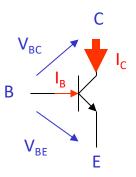
Les gains en courant des PNP << à ceux des NPN.

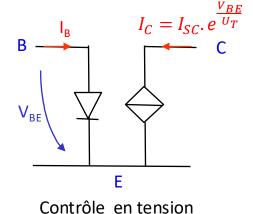
Sens des courants: Celui de la flèche identifiant l'émetteur. Indique si I_B est entrant ou sortant

Relation entre les 3 courants

$$I_E = I_C + I_B \sim I_C$$


Relation entre
$$I_C$$
 et V_{BE} $I_C = I_{SC}.e^{\frac{V_{BE}}{U_T}}$

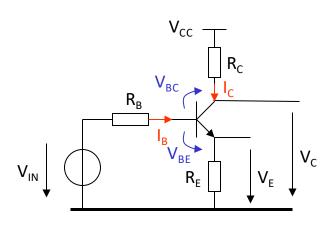

I_s courant inverse de saturation. fA à pA.


Quand NPN conduit, V_{BF} est positive; U_i =0.7V.

Modèles de base (DC) si mode normal de fonctionnement

Grands signaux

Contrôle en courant


Remarques:

- Ne jamais introduire l'approximation $V_{BE} \sim U_j = 0.7V$ dans la relation exponentielle entre I_C et V_{BE} car: Erreurs monstrueuses!
- Autre modèle: Ebers et Moll (même pour d'autres modes de fonctionnement du Bipolaire)

Exercices Méthodologie

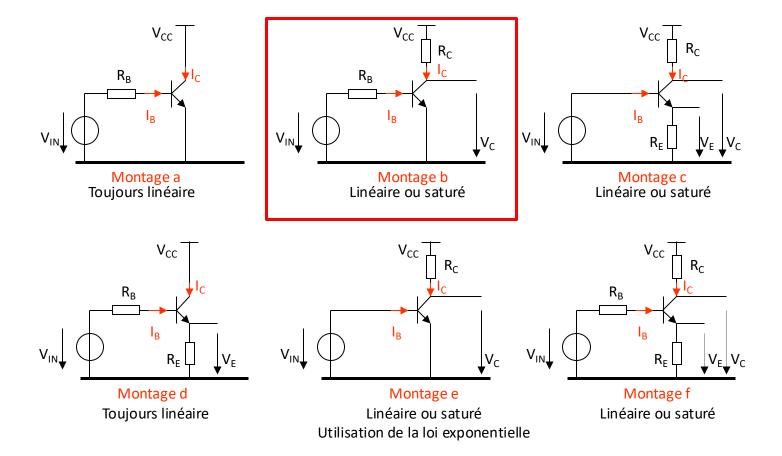
Deux types d'exercices :

- 1. Exprimer puis calculer I_B, I_C, I_E, V_B, V_E, V_C
- 2. Tracer des courbes : Par exemple $V_E = f(V_{IN})$, $V_C = f(V_{IN})$

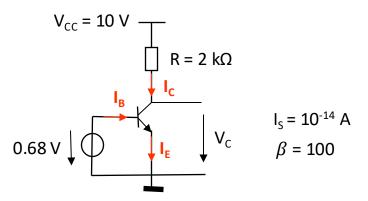
Montage général

Hypothèse 1: Le bipolaire est dans le mode linéaire

- 1. Vérifier si le transistor conduit : V_{IN} > Uj, sinon bloqué!!!
- 2. Vérifier s'il n'y a pas une grandeur dont la valeur est déjà connue. Exemple: Si la résistance R_F n'existe pas, alors $V_F = 0$.
- 3. Calculer le paramètre le plus simple (a) ou poser une équation simple (b) Exemple a: Si la résistance R_E n'existe pas, alors $V_B = 0$. Exemple b: Si la résistance R_E existe, alors $R_B.I_B + Uj + R_E.I_E = V_{IN}$, et $I_E \approx I_C = \beta.I_B$
- 4. A la fin des calculs, vérifier que $V_{BC} < 0$, sinon transistor sature


Hypothèse 2: Le bipolaire est dans le mode saturé

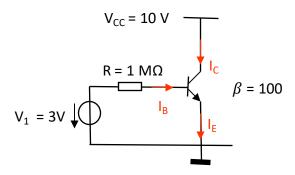
- 1. Vérifier si le transistor conduit : V_{IN} > Uj
- 2. Vérifier s'il n'y a pas une grandeur dont la valeur est déjà connue. Exemple: Si la résistance R_E n'existe pas, alors V_E = 0.
- 3. En mode saturé, $V_{CE} \approx$ quelques dizaines de mV. On pose $V_E \approx V_C$
- 4. Calculer le paramètre le plus simple (a) ou poser une équation simple (b)


Exemple a: Si la résistance R_E n'existe pas, alors V_B = 0 et $V_C \approx 0$ Exemple b: Si la résistance R_E existe, alors $R_C.I_C + V_{CE} = V_{CC}$ avec $V_{CE} \approx I_C = \beta.I_B$

Exercices typiques

Le cas où les transistors sont bloqués n'est pas analysé

Exercice 1



1. Calculer les courants de collecteur, de base et d'émetteur, ainsi que le potentiel $V_{\rm C}$ du collecteur.

$$V_{BE} = 0.68V$$
 $I_C = I_S e^{\frac{v_{BE}}{U_T}}$ Avec $I_S = 10^{-14}$ A, $U_T = 26$ mV,

2. Calculer V_{CB} et vérifier que le transistor est en mode normal de fonctionnement.

Exercice 2

1/ Calculer les courants de collecteur, de base et d'émetteur.

$$V_1 = R.I_B + V_{BE}$$

2/ Calculer V_{BE} et V_{CB} .